Math 3063	Abstract Algebra	Project 2	Name:
	Prof. Paul Bailey	March 2, 2009	

Due Friday, February 6, 2009.

Copy the statement of the problem on a piece of $8\frac{1}{2} \times 11$ piece of blank computer paper, and write the solution underneath. Write neatly. Mathematics should always be written in grammatically correct English, in complete sentences.

For Problems 1 and 2, use the outline provided to complete the proof by filling in the blanks; however, rewrite the entire proof on a separate piece of $8\frac{1}{2} \times 11$ piece of blank computer paper (this will get the style of going about writing the proof "into your fingers").

Definition 1. Let $f : A \to B$.

We say that f is *injective* if

$$f(a_1) = f(a_2) \implies a_1 = a_2.$$

We say that f is *surjective* if

 $\forall b \in B \exists a \in A \text{ such that } f(a) = b.$

We say that f is *bijective* if f is injective and surjective.

Problem 1. Let $f : A \to B$ and $g : B \to C$. Suppose that f is surjective and $g \circ f$ is injective. Show that g is injective.

Proof. Let $b_1, b_2 \in B$ such that $g(b_1) = g(b_2)$. We wish to show that $b_1 = b_2$.

Since f is surjective, there exist $a_1, a_2 \in ___$ such that

 $f(a_1) = _$ and $f(a_2) = _$.

Applying g to these equations gives $g(f(a_1)) = _$ and $g(f(a_2)) = _$.

But $g(b_1) = g(b_2)$, and since $g \circ f$ is injective, $a_1 =$ _____.

Thus $f(a_1) =$ _____, that is, $b_1 = b_2$.

Therefore g is injective.

Problem 2. Let $f : A \to B$ and $g : B \to C$. Suppose that g is injective and $g \circ f$ is surjective. Show that f is surjective.

Proof. Let $b \in B$. We wish to find $a \in A$ such that f(a) = b.

Let c = g(_____).

Since $g \circ f$ is surjective, there exists $a \in A$ such that _____ = c,

that is, g(f(a)) = g(b).

Since g is injective, _____ = b.

Therefore f is surjective.

Problem 3. Consider the relationship between composition and bijectivity.

- (a) Show that the composition of injective functions is injective.
- (b) Show that the composition of surjective functions is surjective.
- (c) Conclude that the composition of bijective functions is bijective.

Definition 2. Let $f : A \to B$ and $g : B \to A$. We say that g is an *inverse* of f if $g \circ f = \operatorname{id}_A$ and $f \circ g = \operatorname{id}_B$. We say that g is a *left inverse* of f if $g \circ f = \operatorname{id}_A$. We say that g is a *right inverse* of f if $f \circ g = \operatorname{id}_B$. We say that f is *invertible* if the exists an inverse for f. We say that f is *left invertible* if the exists a left inverse for f. We say that f is *right invertible* if the exists a left inverse for f. We say that f is *right invertible* if the exists a right inverse for f.

Problem 4. Consider the existence of left and right inverses by giving examples.

- (a) Give an example of a function which is left invertible but not invertible.
- (b) Give an example of a function which is right invertible but not invertible.

Problem 5. Consider the relationship between invertibility and bijectivity.

- (a) Show that a function is left invertible if and only if it is injective.
- (b) Show that a function is right invertible if and only if it is surjective.
- (c) Conclude that a function is invertible if and only if it is bijective.

Definition 3. Let $P, Q \in \mathbb{R}^2$ be given by $P = (x_1, y_1)$ and $Q = (x_1, y_2)$. The distance from P to Q is

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

An isometry of \mathbb{R}^2 is a function $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that d(f(P), f(Q)) = d(P, Q).

Three types of isometries are translations, rotations, and reflections.

A translation is described by (h, k), where $(x, y) \mapsto (x + h, y + k)$.

A rotation is described by (a, b, θ) , where (a, b) is a fixed point and θ is the angle of rotation.

Problem 6. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry such that $f = T \circ R$, where T is the translation described by (h, k) and R is the rotation described by (a, b, θ) . Suppose f(5, 0) = (1, 2) and $f(7, 0) = (2, 2 + \sqrt{3})$. Find h, k, a, b, θ .